The articular cartilage: Structure and pathologies, and electrical fields as a therapeutic alternative. A Review of current concepts
DOI:
https://doi.org/10.1016/j.rccot.2017.06.002Keywords:
articular cartilage, chondrocyte, electric field, cell culture, collagen, aggrecanAbstract
Degenerative pathologies that induce morphological, molecular and biomechanical damages in articular cartilage lead to the biochemical reorganisation of the extracellular matrix, affecting the main molecules, such as collagen type II and aggrecan. In pursuit of therapeutic options, electric fields have been useful as treatment for articular cartilage pathologies. These increase cellular viability and stimulate proliferation and expression of proteins such as collagen type II and the aggrecan core protein. This review focuses on the morphology and physiology, pathologies, and treatments of the articular cartilage, emphasising the importance of using electric fields to stimulate articular chondrocytes cultures. In conclusion, it is shown that electric fields increase cell viability and stimulate proliferation and synthesis of major molecules in the cartilage extracellular matrix. This has implications from a therapeutic point of view for the development of novel applications in tissue engineering and regenerative medicine.
Evidence level. IV.
Downloads
References
Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77-95. https://doi.org/10.1093/bmb/ldn025
Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290:763-9. https://doi.org/10.1006/bbrc.2001.6270
Mueller MB, Tuan RS. Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM & R. 2011;3 6 Suppl 1:S3-11. https://doi.org/10.1016/j.pmrj.2011.05.009
Salud CD. GuíTa de referencia de atención en medicina general: Osteoartritis. Manual de Calidad. 2012;1:1-18.
Farr J, Mont MA, Garland D, Caldwell JR, Zizic TM. Pulsed electrical stimulation in patients with osteoarthritis of the knee: follow up in 288 patients who had failed non-operative therapy. Surg Technol Int. 2006;15:227-33.
Kuettner KE, Pauli BU, Gall G, Memoli VA, Schenk RK. Synthesis of cartilage matrix by mammalian chondrocytes in vitro, I. Isolation, culture characteristics, and morphology. J Cell Biol. 1982;93:743-50. https://doi.org/10.1083/jcb.93.3.743
Meyer U. The history of tissue engineering and regenerative medicine in perspective. En: Meyer U, Handschel J, Wiesmann HP, et al., editores. Fundamentals of tissue engineering and regenerative medicine. Berlin-Heidelberg: Springer; 2009. p. 5-12. https://doi.org/10.1007/978-3-540-77755-7_1
Nerem RM. The challenge of imitating nature. En: Lanza R, Langer R, Vacanti J, editores. Principles of tissue engineering. Third Edition Burlington: Academic Press; 2007. p. 7-14. https://doi.org/10.1016/B978-012370615-7/50006-8
Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000;21:431-40. https://doi.org/10.1016/S0142-9612(99)00213-6
Yen YM, Cascio B, O'Brien L, Stalzer S, Millett PJ, Steadman JR. Treatment of osteoarthritis of the knee with microfracture and rehabilitation. Med Sci Sports Exerc. 2008;40:200-5. https://doi.org/10.1249/mss.0b013e31815cb212
Armstrong PF, Brighton CT, Star AM. Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form. J Orthop Res. 1988;6:265-71. https://doi.org/10.1002/jor.1100060214
Baker B, Spadaro J, Marino A, Becker RO. Electrical stimulation of articular cartilage regeneration. Ann N Y Acad Sci. 1974;238:491-9. https://doi.org/10.1111/j.1749-6632.1974.tb26815.x
Brighton CT, Jensen L, Pollack SR, Tolin BS, Clark CC. Proliferative and synthetic response of bovine growth plate chondrocytes to various capacitively coupled electrical fields. J Orthop Res. 1989;7:759-65. https://doi.org/10.1002/jor.1100070519
Brighton CT, Townsend PF. Increased cAMP production after short-term capacitively coupled stimulation in bovine growth plate chondrocytes. J Orthop Res. 1988;6:552-8. https://doi.org/10.1002/jor.1100060412
Brighton CT, Unger AS, Stambough JL. In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields. J Orthop Res. 1984;2:15-22. https://doi.org/10.1002/jor.1100020104
Brighton CT, Wang W, Clark CC. Up-regulation of matrix in bovine articular cartilage explants by electric fields. Biochem Biophys Res Commun. 2006;342:556-61. https://doi.org/10.1016/j.bbrc.2006.01.171
Brighton CT, Wang W, Clark CC. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J Bone Joint Surg Am. 2008;90:833-48. https://doi.org/10.2106/JBJS.F.01437
Nakasuji S, Morita Y, Tanaka K, Tanaka T, Nakamachi E. Effect of pulse electric field stimulation on chondrocytes. Asian Pacific Conference for Materials and Mechanics. 2009.
Rodan GA, Bourret LA, Norton LA. DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science. 1978;199:690-2. https://doi.org/10.1126/science.625660
Wang W, Wang Z, Zhang G, Clark CC, Brighton CT. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin Orthop Relat Res. 2004; 427 Suppl:S163-73. https://doi.org/10.1097/01.blo.0000143837.53434.5c
Cowin SC, Doty SB. Tissue Mechanics. New York: Springer; 2007. https://doi.org/10.1007/978-0-387-49985-7
Liebman J, Goldberg RL. Chondrocyte culture and assay. Curr Protoc Pharmacol. 2001. Chapter 12: Unit 12. https://doi.org/10.1002/0471141755.ph1202s12
Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci U S A. 2012;109: 10012-7. https://doi.org/10.1073/pnas.1121605109
Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629-48. https://doi.org/bj7xn3
Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000;22:138-47.
Bobick BE, Kulyk WM. Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. Birth Defects Res C Embryo Today. 2008;84:131-54. https://doi.org/10.1002/bdrc.20126
Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332-6. https://doi.org/10.1038/nature01657
Cole BJ, Malek MM. Articular cartilage lesions: A practical guide to assessment and treatment. New York: Springer; 2004. https://doi.org/10.1007/978-0-387-21553-2
Ballock RT, O'Keefe RJ. The biology of the growth plate. J Bone Joint Surg Am. 2003;85-A:715-26. https://doi.org/10.2106/00004623-200304000-00021
Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Developmental cell. 2002;2:389-406. https://doi.org/10.1016/S1534-5807(02)00157-0
Davies SR, Sakano S, Zhu Y, Sandell LJ. Distribution of the transcription factors Sox9, -2, and [delta]EF1 in adult murine articular and meniscal cartilage and growth plate. J Histochem Cytochem. 2002;50:1059-65. https://doi.org/10.1177/002215540205000808
Erggelet C, Mandelbaum BR, Mrosek EH, Scopp JM. Articular cartilage biology. Principles of cartilage repair. Heidelberg, Steinkopff, Berlin: Springer; 2008. p. 3-5.
Quintero M, Monfort J, Mitrovic DR. Osteoartrosis: biología, fisiopatología, clínica y tratamiento. Madrid: Médica Panamericana; 2009.
Athanasiou KA, Darling EM, Hu JC. Articular cartilage tissue engineering. Synthesis Lectures on Tissue Engineering. 2009;1:1-182. https://doi.org/10.2200/S00212ED1V01Y200910TIS003
Álvarez LA, Casanova MC, García LY. Fisiopatología, clasificación y diagnóstico de la osteoartritis de rodilla. Revista Cubana de Ortopedia y Traumatología. 2004;18:41-6.
Sandell LJ, Morris N, Robbins JR, Goldring MB. Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol. 1991;114:1307-19. https://doi.org/10.1083/jcb.114.6.1307
Chen FH, Rousche KT, Tuan RS. Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol. 2006;2:373-82. https://doi.org/10.1038/ncprheum0216
Sandell LJ, Nalin AM, Reife RA. Alternative splice form of type II procollagen mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues during early mouse development. Dev Dyn. 1994;199:129-40. https://doi.org/10.1002/aja.1001990206
Schwartz N. Biosynthesis and regulation of expression of proteoglycans. F Front Biosci. 2000;5:D649-55. https://doi.org/10.2741/A540
Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 2005;62:2241-56. https://doi.org/10.1007/s00018-005-5217-x
Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, et al. Cartilage matrix proteins, An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem. 1992;267:6132-6. https://doi.org/10.1016/S0021-9258(18)42671-3
DiCesare PE, Mörgelin M, Mann K, Paulsson M. Cartilage oligomeric matrix protein and thrombospondin 1, Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem. 1994;223:927-37. https://doi.org/10.1111/j.1432-1033.1994.tb19070.x
Eleswarapu SV, Leipzig ND, Athanasiou KA. Gene expression of single articular chondrocytes. Cell Tissue Res. 2007;327:43-54. https://doi.org/10.1007/s00441-006-0258-5
Poole CA. Articular cartilage chondrons: form, function and failure. J Anat. 1997;191:1-13 (Pt 1). https://doi.org/10.1046/j.1469-7580.1997.19110001.x
Ross MH, Pawlina W. Histología: Texto y Atlas color con Biología Celular y Molecular. Buenos Aires: Médica Panamericana; 2008.
Aroen A, Loken S, Heir S, Ekeland A, Granlund OG, Engebretsen L. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32:211-5. https://doi.org/10.1177/0363546503259345
Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456-60. https://doi.org/10.1016/S0749-8063(97)90124-9
Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58:15-25. https://doi.org/10.1002/art.23177
Rojas DC, Bejarano BM. Los usuarios con osteoartrosis de rodilla, UNISALUD, Colombia: una mirada desde la epidemiología crítica. Medicina Social. 2010;5:203-14.
Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81:646-56.
Seed SM, Dunican KC, Lynch AM. Osteoarthritis: a review of treatment options. Geriatrics. 2009;64:20-9.
Moskowitz R, Altman R, Buckwalter JA, Goldberg VM, Hochberg MC. Osteoarthritis: Diagnosis and medical-surgical management. Philadelphia: Lippincott, Williams and Willkins; 2007.
Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22:351-84. https://doi.org/10.1016/j.berh.2008.02.001
Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, MainilVarlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev. 2006;58:300-22. https://doi.org/10.1016/j.addr.2006.01.012
Sánchez Blanco I. Manual SERMEF de Rehabilitación y Medicina Física. Madrid: Médica Panamericana; 2006.
Tipler PA, Mosca G. Física para la ciencia y la tecnología: Electricidad y Magnetismo. Barcelona: Reverté; 2007.
Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: a novel tool for tissue engineering. Tissue engineering Part B, Reviews. 2013;19:48-57. https://doi.org/10.1089/ten.teb.2012.0183
Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4:30-5. https://doi.org/10.1186/ar380
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Colombiana de ortopedia y traumatología

This work is licensed under a Creative Commons Attribution 3.0 Unported License.