Qualitative and quantitative assessment of platelet rich plasma (PRP) gel as a local delivery system of antibiotics. In vitro Study

Authors

  • Javier Escobar Universidad El Bosque. Bogotá, Colombia
  • Betsy Castro Universidad El Bosque. Bogotá, Colombia
  • Natasha Vanegas Universidad El Bosque. Bogotá, Colombia
  • Luís Jose León Universidad El Bosque. Bogotá, Colombia
  • Juan David Vélez Universidad El Bosque. Bogotá, Colombia
  • Julián Camargo Universidad El Bosque. Bogotá, Colombia
  • Juan Carlos López Universidad El Bosque. Bogotá, Colombia
  • Juan Manuel Herrera Universidad El Bosque. Bogotá, Colombia

DOI:

https://doi.org/10.1016/j.rccot.2016.03.003

Keywords:

platelet rich plasma gel, antibiotics local delivery system, muscle skeletal infection

Abstract

Introduction: It has been theorized that antibiotic loaded autologous platelet rich plasma (PRP) gel inhibits in vitro growth of bacteria, resembling an antibiotic local delivery system.
Materials & methods: Fresh PRP obtained from healthy donors was activated with CaCl2 and loaded with 12 different antibiotics (oxacillin, gentamicin, vancomycin, trimethoprim/sulfamethoxazole, clindamycin, erythromycin, linezolid, tigecycline, tetracycline, chloramphenicol, rifampicin, and ciprofloxacin). The ability of the PRP to retain and release antibiotics was evaluated by conventional S. aureus (ATCC 29213) bacterial growth inhibition through the Kirby Bauer method at several times (1 to 21 hours). Initial and final antibiotic load of each PRP sample was evaluated by high-pressure liquid chromatography (HPLC).
Results: We had found out that rifampicin, tetracycline, vancomycin, tigecycline, clindamycin, and trimethoprim/sulfamethoxazole, showed a slow release rate (more than 21 hours), as well as gentamicin, erythromycin, ciprofloxacin, linezolid, oxacillin and chloramphenicol showed a fast release rate (less than 21 hours), all of them producing effectively bacterial growth inhibition. Vancomycin, tetracycline, trimethoprim/sulfamethoxazole, erythromycin, ciprofloxacin, linezolid, and chloramphenicol required a higher concentration (more than 4 mg/ml) on PRP gel to effectively achieve in vitro bacterial growth inhibition. PRP showed an ability to retain 12.5% of oxacillin at 21 hours.
Discussion: PRP gel showed a good retention and release ability with all the evaluated antibiotics.
Evidence Level: III.

Downloads

Download data is not yet available.

Author Biographies

Javier Escobar, Universidad El Bosque. Bogotá, Colombia

Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia.

Betsy Castro, Universidad El Bosque. Bogotá, Colombia

Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia.

Natasha Vanegas, Universidad El Bosque. Bogotá, Colombia

Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia.

Luís Jose León, Universidad El Bosque. Bogotá, Colombia

Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia.

Juan David Vélez, Universidad El Bosque. Bogotá, Colombia

Posgrado de Ortopedia y Traumatología, Universidad El Bosque, Bogotá, Colombia.

Julián Camargo, Universidad El Bosque. Bogotá, Colombia

Posgrado de Ortopedia y Traumatología, Universidad El Bosque, Bogotá, Colombia.

Juan Carlos López, Universidad El Bosque. Bogotá, Colombia

Posgrado de Ortopedia y Traumatología, Universidad El Bosque, Bogotá, Colombia.

Juan Manuel Herrera, Universidad El Bosque. Bogotá, Colombia

Director de la Fundación CIMB, Bogotá, Colombia; Posgrado de Ortopedia y Traumatología, Universidad El Bosque, Bogotá, Colombia.

References

Scott IR, Stockley I, Getty CJM. Exchange arthroplasty for infected knee replacement. A new two stage method. J Bone Joint Surg. 1993;75B:28-31. https://doi.org/10.1302/0301-620X.75B1.8421028

Trippel SB. Antibiotic impregnated cement in total Joint arthroplasty. J Bone Joint Surg. 1986;68:1297-302. https://doi.org/10.2106/00004623-198668080-00026

Garvin KL, Evans BG, Salvatu EA, Brause BD. Palacos gentamicin for the treatment of deep periprosthetic hip infection. Clin Orthop. 1994;298:97-105. https://doi.org/10.1097/00003086-199401000-00015

Hanssen AD, Osmon DR, Nelson CL. Prevention of deep periprosthetic joint infection. Instr Course Lect. 1997;46:555-67.

Trampuz A, Osmon DR, Hanssen AD, Steckelberg Jm, Patel R. Molecular and antibiofilm approaches to prosthetic Joint infection. Clin Orthop. 2003;414:69-88. https://doi.org/10.1097/01.blo.0000087324.60612.93

Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:638-46. https://doi.org/10.1016/S1079-2104(98)90029-4

Berghoff WJ, Pietrzak WS, Rhodes RD. Platelet rich plasma application during closure following total knee arthroplasty. Orthopedics. 2006;29:590-8. https://doi.org/10.3928/01477447-20060701-11

Gardner MJ, Demetrakpolous D, Klepchick PR, Mooar PA. The efficacy of autologous platelet gel in pain control and blood loss in total knee arthroplasty. An analysis of the haemoglobin, narcotic requirement and range of motion. Int Orthop. 2007;31:309-13. https://doi.org/10.1007/s00264-006-0174-z

Barret S, Erredge S. Growth factors for chronic plantar fasciitis. Podiatry today. 2004;17:37-42.

Sciolo M. Treatment of recalcitrant enthensopathy of the hip with platelet Rich plasma-a report of three cases. Clin Orthop Soc News. 2006;Spring:6-7.

Bielecki T, Gazdzik TS, Szczepanski T. Benefit of percutaneous injection of autologous platelet-leukocyte rich gel in patients with delayed union and nonunion. Eur Surg Res. 2008;40:289-96. https://doi.org/10.1159/000114967

Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91:4-15. https://doi.org/10.1160/TH03-07-0440

Sánchez M, Anitua E, Azofra J, Andia I, Padilla S, Mujika I. Comparison of surgically repaired Achilles tendon tears using platelet-rich fibrin matrices. Am J Sport Med. 2007;35:245-51. https://doi.org/10.1177/0363546506294078

Camargo J, Vanegas N, Vélez JD, López JC, Herrera JM. Plasma rico en plaquetas como sistema de entrega local de antibióticos en infecciones óseas: estudio in vitro. Rev Col Ortop Traumatol. 2012;26:39-49.

Buchholz HW, Elson RA, Engelbrecht E, Lodenkamper H, Rottger J, Siegel A. Management of deep infection of total hip replacement. J Bone Joint Surg. 1981;63B:342-53. https://doi.org/10.1302/0301-620X.63B3.7021561

Antti-Poika I, Santavirta S, Konttinen Y, Honkanen V. Outcome of the infected hip arthroplasty. A retrospective study of 36 patients. Acta Orthop Scandinavica. 1989;60:670-5. https://doi.org/10.3109/17453678909149600

Berry D, Chandler H, Reilly D. The use of bone allografts in two stage reconstruction alter failure of hip replacements due to infection. J Bone Joint Surg. 1991;73-A:1460-8. https://doi.org/10.2106/00004623-199173100-00003

Becker PL, Smith RA, Williams RS, Dutkowsky JP. Comparison of antibiotic release from polymethylmethacrylate beads and sponge collagen. J Orthop Res. 1994;12:737-41. https://doi.org/10.1002/jor.1100120517

Kendall RW, Duncan CP, Smith Ja, Ngui Yen JH. Persistent of bacteria on antibiotic loaded acrylic depots. A reason for caution. Clin Orthop. 1996;329:273-80. https://doi.org/10.1097/00003086-199608000-00034

Petty W, Spanier S, Shuster JJ, Silverthorne C. The influence of skeletal implants of incidence of infection. Experiments in a canine model. J Bone Joint Surg. 1985;67A:1236-44. https://doi.org/10.2106/00004623-198567080-00015

Nelson CL. The current status of material used for depot delivery of drugs. Clin Orthp. 2004;427:72-8. https://doi.org/10.1097/01.blo.0000143741.92384.18

Ostermann PA, Sligson D, Henry SL. Local antibiotic therapy for severe open fractures: a review of 1085 consecutive cases. J Bone Joint Surg Br. 1995;77:93-7. https://doi.org/10.1302/0301-620X.77B1.7822405

Hanssen AD, Rand JA, Osmn DR. Treatment of the infected total knee arthroplasty with insertion of another prosthesis: the effect of antibiotic-impregnated bone cement. Clin Orthop. 1994;309:44-55.

Chohfi M, Langlais F, Fourastier J, et al. Pharmacokinetics, uses and limitation of vancomicin-loaded bone cement. Internal Orthop. 1998;22:171-7. https://doi.org/10.1007/s002640050235

Frutos Cabanillas P, Díez Pena E, Berrales-Rienda JM, Frutos G. Validation and in vitro characterization of antibiotic-loaded bone cement release. Internal J Pharm. 2000;209:15-26. https://doi.org/10.1016/S0378-5173(00)00520-2

Greene N, Holtom PD, Warren CA, et al. In vitro elution of tobramicin and vancomicin polymethylmethacrylate beads and spacers from simples and palacos. Am J Orthop. 1998;27: 201-5.

Masri BA, Duncan CP, Beauchamp CP, Paris NJ, Arntorp J. Effect of varying surface pattern on antibiotic elution from antibiotic loaded bone cement. J Arthroplasty. 1995;10:453-9. https://doi.org/10.1016/S0883-5403(05)80145-7

Penner MJ, Duncan CP, Masri BA. The in vitro elution characteristics of antibiotic-loaded CMW and palacos R bone cement. J Arthroplasty. 1999;14:209-14. https://doi.org/10.1016/S0883-5403(99)90128-6

Koo KH, Yang JW, Cho SW, Song HR, Park HB, Ha YC, et al. Impregnation spacer for two stage cementless reconstruction in infected total hip arthroplasty. J Arthroplasty. 2001;16: 882-98. https://doi.org/10.1054/arth.2001.24444

Joseph TN, Chen AL, Di Cesare PE. Use of antibiotic impregnated cement in total Joint arthroplasty. J Am Acad Orthop Surg. 2003;11:38-47. https://doi.org/10.5435/00124635-200301000-00006

Hanssen AD, Spengehl MJ. Practical applications of antibiotic loaded bone cement for treatment of infected Joint replacements. Clin Orthop Relat Res. 2004;427:79-85. https://doi.org/10.1097/01.blo.0000143806.72379.7d

Bunetel L, Segui A, Cormier M, Percheron E, Langlais F. Release of gentamicin form acrylic bone cement. Clin Pharm. 1989;17:291-7. https://doi.org/10.2165/00003088-198917040-00006

Baker AS, Greenham LW. Release of gentamicin from acrylic bone cement: elution and difussion studies. J Bone Joint Surg. 1998;70-A:1551-7. https://doi.org/10.2106/00004623-198870100-00015

Kendall RW, Duncan CP, Beauchamp CP. Bacterial growth on antibiotic, loaded acrylic cement: a prospective in vivo retrieval study. J Arthroplasty. 1995;10:817-22. https://doi.org/10.1016/S0883-5403(05)80081-6

Buchholz HW, Elson RA, Heinert K. Antibiotic loaded acrylic cement: current concepts. Clin Orthop. 1984;190:96-108. https://doi.org/10.1097/00003086-198411000-00014

Wentworth SJ, Masri BA, Dubcan CP, Southworth CB. Hip prosthesis of antibiotic loaded acrylic cement for the treatment of infection following total hip arthroplasty. J Bone Joint Surg. 2002;84-A Suppl 2:123-8. https://doi.org/10.2106/00004623-200200002-00017

Walenkamp G, Vree T, Van Rens T. Gentamicin-PMMA, beads pharmacokinetics and nephrotoxicity. Clin Orthop. 1986;205:171-83. https://doi.org/10.1097/00003086-198604000-00021

Huddleston PM, Steckelberg JM, Hanssen AD, et al. Ciprofloxacin inhibition of experimental fracture healing. J Bone Surg. 2000;82-A:161-73. https://doi.org/10.2106/00004623-200002000-00002

Published

2016-04-12

How to Cite

1.
Escobar J, Castro B, Vanegas N, León LJ, Vélez JD, Camargo J, et al. Qualitative and quantitative assessment of platelet rich plasma (PRP) gel as a local delivery system of antibiotics. In vitro Study. Rev. Colomb. Ortop. Traumatol. [Internet]. 2016 Apr. 12 [cited 2025 May 11];29(4):146-51. Available from: https://revistasccotorg.biteca.online/index.php/rccot/article/view/413

Issue

Section

Original research