Measurement of glenoid bone loss and Hill-Sachs defect by magnetic resonance imaging: Correlation and concordance study with computed tomography measurement
DOI:
https://doi.org/10.1016/j.rccot.2022.04.007Keywords:
shoulder dislocation, magnetic resonance imaging, tomographyAbstract
Introduction: The aim is to define whether the measurement of glenoid and Hill-Sachs defects by magnetic resonance imaging is equivalent to the measurement by simple tomography in patients with anterior shoulder instability.
Materials and methods: Descriptive, observational, cross-sectional study of a cohort of imaging studies of patients with a history of anterior shoulder dislocation, comprising magnetic resonance and simple tomography of the shoulder, performed in a fourth level hospital.
Results: The cohort consisted of 20 cases; a high and statistically significant correlation was found for the measurement of the glenoid diameter and defect, with a p < 0.05 between the MRI and simple tomography. In addition, the Hill-Sachs interval measurement was found to be statistically significant, but the correlation index was not high, 60%. For intraobserver agreement, a Kappa index was calculated for MRI of 0.8 compared to CT with p-value <0.05 significant for engaging and non-engaging defects.
Conclusion: Simple MRI is a reliable imaging method with high correlation index for the measurement of diameter and glenoid defects with good agreement to establish whether Hill-Sachs defects are engaging or not.
Level of Evidence: Level III
Downloads
References
Leroux T, Wasserstein D, Veillette C, Khoshbin A, Henry P, Chahal J, et al. Epidemiology of primary anterior shoulder dislocation requiring closed reduction in Ontario. Canada. Am J Sports Med. 2014;42:442-50, http://dx.doi.org/10.1177/0363546513510391.
Owens BD, Dawson L, Burks R, Cameron KL. Incidence of shoulder dislocation in the United States military: demographic considerations from a high-risk population. J Bone Joint Surg Am. 2009;91:791-6, http://dx.doi.org/10.2106/JBJS.H. 00514.
Leroux T, Ogilvie-Harris D, Veillette C, Chahal J, Dwyer T, Khoshbin A, et al. The epidemiology of primary anterior shoulder dislocations in patients aged 10 to 16 years. Am J Sports Med. 2015;43:2111-7, http://dx.doi.org/10.1177/0363546515591996.
Gyftopoulos S, Yemin A, Mulholland T, Bloom M, Storey P, Geppert C, et al. 3DMR osseous reconstructions of the shoulder using a gradient-echo based two-point Dixon reconstruction: a feasibility study. Skeletal Radiol. 2013;42:347-52, http://dx.doi.org/10.1007/s00256-012-1489-z.
Crichton J, Jones DR, Funk L. Mechanisms of traumatic shoulder injury in elite rugby players. Br J Sports Med. 2012;46:538-42, http://dx.doi.org/10.1136/bjsports-2011-090688.
Longo UG, Huijsmans PE, Maffulli N, Denaro V, De Beer JF. Video analysis of the mechanisms of shoulder dislocation in four elite rugby players. J Orthop Sci. 2011;16:389-97, http://dx.doi.org/10.1007/s00776-011-0087-6.
Spatschil A, Landsiedl F, Anderl W, Imhoff A, Seiler H, Vassilev I, et al. Posttraumatic anterior-inferior instability of the shoulder: arthroscopic findings and clinical correlations. Arch Orthop Trauma Surg. 2006;126:217-22, http://dx.doi.org/10.1007/s00402-005-0006-4.
Yiannakopoulos CK, Mataragas E, Antonogiannakis E. A comparison of the spectrum of intra-articular lesions in acute and chronic anterior shoulder instability. Arthroscopy. 2007;23:985-90, http://dx.doi.org/10.1016/j.arthro.2007.05.009.
Taylor DC, Arciero RA. Pathologic changes associated with shoulder dislocations. Arthroscopic and physical examination findings in first-time, traumatic anterior dislocations. Am J Sports Med. 1997;25:306-11, http://dx.doi.org/10.1177/036354659702500306.
Piasecki DP, Verma NN, Romeo AA, Levine WN, Bach BR Jr, Provencher MT. Glenoid bone deficiency in recurrent anterior shoulder instability: diagnosis and management. J Am Acad Orthop Surg. 2009;17:482-93, http://dx.doi.org/10.5435/00124635-200908000-00002.
Lynch JR, Clinton JM, Dewing CB, Warme WJ, Matsen FA 3rd. Treatment of osseous defects associated with anterior shoulder instability. J Shoulder Elbow Surg. 2009;18:317-28, http://dx.doi.org/10.1016/j.jse.2008.10.013.
Anakwenze OA, Hsu JE, Abboud JA, Levine WN, Huffman GR. Recurrent anterior shoulder instability associated with bony defects. Orthopedics. 2011;34:538-44, http://dx.doi.org/10.3928/01477447-20110526-21, quiz 545-6.
Itoi E, Lee SB, Berglund LJ, Berge LL, An KN. The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Joint Surg Am. 2000;82:35-46, http://dx.doi.org/10.2106/00004623-200001000-00005.
Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from "engaging/non-engaging" lesion to ‘‘on-track/off-track’’ lesion. Arthroscopy. 2014;30:90-8, http://dx.doi.org/10.1016/j.arthro.2013.10.004.
Di Giacomo G, Piscitelli L, Pugliese M. The role of bone in glenohumeral stability. EFORT Open Rev. 2018;3:632-40, http://dx.doi.org/10.1302/2058-5241.3.180028.
Vopat BG, Cai W, Torriani M, Vopat ML, Hemma M, Harris GJ, et al. Measurement of Glenoid Bone Loss With 3-Dimensional Magnetic Resonance Imaging: A Matched Computed Tomography Analysis. Arthroscopy. 2018;34:3141-7, http://dx.doi.org/10.1016/j.arthro.2018.06.050.
Chuang TY, Adams CR, Burkhart SS. Use of preoperative three-dimensional computed tomography to quantify glenoid bone loss in shoulder instability. Arthroscopy. 2008;24:376-82, http://dx.doi.org/10.1016/j.arthro.2007.10.008.
Ochoa E Jr, Burkhart SS. Bone defects in anterior instability of the shoulder: Diagnosis and management. Oper Tech Orthopaed. 2008;18:68-78, http://dx.doi.org/10.1053/j.oto.2008.07.003.
Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91:1882-9, http://dx.doi.org/10.2106/JBJS.H. 01199.
Huijsmans PE, Haen PS, Kidd M, Dhert WJ, van der Hulst VP, Willems WJ. Quantification of a glenoid defect with three-dimensional computed tomography and magnetic resonance imaging: a cadaveric study. J Shoulder Elbow Surg. 2007;16:803-9, http://dx.doi.org/10.1016/j.jse.2007.02.115.
Ho A, Kurdziel MD, Koueiter DM, Wiater JM. Three-dimensional computed tomography measurement accuracy of varying Hill- Sachs lesion size. J Shoulder Elbow Surg. 2018;27:350-6, http://dx.doi.org/10.1016/j.jse.2017.09.007.
Provencher MT, Bhatia S, Ghodadra NS, Grumet RC, Bach BR Jr, Dewing CB, et al. Recurrent shoulder instability: current concepts for evaluation and management of glenoid bone loss. J Bone Joint Surg Am. 2010;92 Suppl 2:133-51, http://dx.doi.org/10.2106/JBJS.J.00906.
Burkhart SS, Danaceau SM. Articular arc length mismatch as a cause of failed bankart repair. Arthroscopy. 2000;16:740-4, http://dx.doi.org/10.1053/jars.2000.7794.
Chen AL, Hunt SA, Hawkins RJ, Zuckerman JD. Management of bone loss associated with recurrent anterior glenohumeral instability. Am J Sports Med. 2005;33:912-25, http://dx.doi.org/10.1177/0363546505277074.
Latarjet M. Treatment of recurrent dislocation of the shoulder. Lyon Chir. 1954 Nov-Dec;49:994-7.
Helfet AJ. Coracoid transplantation for recurring dislocation of the shoulder. J Bone Joint Surg (Br). 1958;40:198-202.
Warner JJ, Gill TJ, O’hollerhan JD, Pathare N, Millett PJ. Anatomical glenoid reconstruction for recurrent anterior glenohumeral instability with glenoid deficiency using an autogenous tricortical iliac crest bone graft. Am J Sports Med. 2006;34:205-12, http://dx.doi.org/10.1177/0363546505281798.
Provencher MT, Ghodadra N, LeClere L, Solomon DJ, Romeo AA. Anatomic osteochondral glenoid reconstruction for recurrent glenohumeral instability with glenoid deficiency using a distal tibia allograft. Arthroscopy. 2009;25:446-52, http://dx.doi.org/10.1016/j.arthro.2008.10.017.
Gyftopoulos S, Hasan S, Bencardino J, Mayo J, Nayyar S, Babb J, et al. Diagnostic accuracy of MRI in the measurement of glenoid bone loss. AJR Am J Roentgenol. 2012;199:873-8, http://dx.doi.org/10.2214/AJR.11.7639.
Yanke AB, Shin JJ, Pearson I, Bach BR Jr, Romeo AA, Cole BJ, et al. Three-Dimensional Magnetic Resonance Imaging Quantification of Glenoid Bone Loss Is Equivalent to 3-Dimensional Computed Tomography Quantification: Cadaveric Study. Arthroscopy. 2017;33:709-15, http://dx.doi.org/10.1016/j.arthro.2016.08.025.
Friedman LG, Ulloa SA, Braun DT, Saad HA, Jones MH, Miniaci AA. Glenoid Bone Loss Measurement in Recurrent Shoulder Dislocation: Assessment of Measurement Agreement Between CT and MRI. Orthop J Sports Med. 2014;2, http://dx.doi.org/10.1177/2325967114549541, 2325967114549541.
Lee RK, Griffith JF, Tong MM, Sharma N, Yung P. Glenoid bone loss: assessment with MR imaging. Radiology. 2013;267:496-502, http://dx.doi.org/10.1148/radiol.12121681.
De Souza PM, Brandão BL, Brown E, Motta G, Monteiro M, Marchiori E. Recurrent anterior glenohumeral instability: the quantification of glenoid bone loss using magnetic resonance imaging. Skeletal Radiol. 2014;43:1085-92, http://dx.doi.org/10.1007/s00256-014-1894-6.
Stillwater L, Koenig J, Maycher B, Davidson M. 3D-MR vs. 3D-CT of the shoulder in patients with glenohumeral instability. Skeletal Radiol. 2017;46:325-31, http://dx.doi.org/10.1007/s00256-016-2559-4.
Downloads
Published
How to Cite
Issue
Section
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |